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I!II:RTlAL RAIIGI:S 1!1 TWO- DU4E:NSIOIIAL TURBULENCE 

Robert II. K:raichnan 

Two-dimensional turbulence hds both kinetic ener&y and ~an-square 

vorticity as inviscid constants of ~otion . Consequently it ad~it~ two 

. < > 'I /3 -s,., < > 2/3 - 3 . foroal 1nertial ranges , E k ~ c k and r. k ~ n k • wh~r~ r 1s 

the rate of cascade of kine t ic energy per unit mass , n i s th~ r ate of 

cascade O• nean-square vorticity , and the kinetic energy per un.t Qass 

is /
0
-t(k)dk . The - 5/3 range is found to entail backward energy cascad~ , 

from higher to lower wavenumbors k , together with zero vorticity f low . 

·, :.e - 3 range gives an upward vorti ci -cy flow and zero energy flow . Th~ 

paradox in these results is rcs~ed by the irreducibly triangular nat ure 

of the elementary wavenumber-interact ions . The formal - 3 range gives a 

nonlocal cascade and consequently ~ust be modified by lo;arithmlc factors . 

If energy is ted in at a const~t rate to a band of wavenumbers ~ ~i and 

the Reynolds number is large , it i s conjectured t hat a quasisteady state 

results with a - 5/3 rar.g~ fork << k . and a - 3 r ange for 
l 

the viscous cut -off , The total kinet ic energy i,cre•ses 

k '>> k. , up t o 
1 

wi::h til3e 
steadily,.. as the 

- 5/3 range pushes to ever- lower k , until scales the s~~e cf the entire 

fluid are strongly exci t ed . The rate of ene rgy dissipat i on by viscosity 

decreases to zero if kinematic viscosity is decreased to zero with other 

paramete~ u:~ca.angcd . 
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l. It.7RODUCTIO!i 

The vorticity of each fluid ele~nt is an invlscid constant of 

motion in two-dimensional in~omoressible flow . Therefor~ the mean-square 

vorticiry as well as the kinetic energy p~r unit mass a~ inviscid con-

stants in t wo-dimensional i sotro?ic turbulen~ . A n~~er of au!~ors 

have stuclied two-dillll!nsional tu.rbuler.ce theoretir.ally , an<l it is recognized 

that the vorticity constraint has profounJ ef~ects on inertial energy 

1-9 tr":-.sfer . In contrast to the prcdo"'linantly one-way flow of ener&y 

famlliar in three dimensions , .ransfer upward in wavenumber wust be 

accompanied by cocparoble or greater downwat~ transfer . 

According to the two-dicensional Navier-Stokes equati~ , the inter-

action of each triad of llavenu:r.bers k , p , q inaividcally conserves both 

er~ergy and squared vorticity . In order to separate off questions involving 

the localness of energy !ransfer, suppo~e that all triad interactions '"or 

which the saallest of the three wavenumbers is less than , say , one-half 

the largest are aroitrarily eliminated fr~ the dynan~cal equations . 

Divi~e the waven•uruber range into half-octave segments , so that all the 

tr~."ld interactions left in u,e equations either .:onnect nearest- neighbor 

segments cr are contained entirely within a single segcent. fig . 1-a 

illustrates the segmentation and the way in which ~he triad interactions 

ccnn~ct nearest n~ighbors . In order for both energy and squared vorticity 

t o be conserved , the net t~~nsfer by e~ch triad interaction must either be 

out of the middle wavenumbe1 into both smallest and largest waver.umbers . 

or vice versa . The a~rows in fig. 1-a are arbitrarily drawn for the case 

o! outflow from the middle wavenw=her. 
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In three di~nsions , the triad interactions can be likened with some 

success to pair interactions (fig . 1-b) . This is inadmisqible in two di-

mensions because pair interactions cannot transfer both energy and squared 

vorticity conse~vatively between unequal wavenumbers . 

There is no simplil general relation between energy and squared-

vorticity transfer . Segment n in fig . 1- a is connected to the lower-wave-

number segment n- 1 by two kinds of triad interactions : those with a pair 

of waven~~rs in n and those with a pair of wavenumbers in n-1 . The 

forme r transfer squared vorticity and kinetic energy per unit mass from 

n- 1 t on in ratios< 2k
0

2 • where k
0 

is the wavenumber which separates the 
... 

segmente . The latter transfer these quantities in ratios > 2kn4
• The 

net r ates of energy transfer per unit mass c and squared-vorticity transfer 

n from below k to above k depend on the sig.>s and r'elat:ive strengths of n n 

the two kinds of interacti ons . for example , if the interactions having 

a single wavenumber in n are sufficiently strong co~pa.~d to those having 

., s ingle wavenumber i n n- 1 , it is possible for n t o be positive while 

simultaneously E is negative . 

An important inference can be made for similari~y cascades where a 

k-independ~nt total contribution t o £ is made by all triads whose ratio of 

largest to smallest wavenumber falls belo-.,. some arbitrary litti t . The triple 

moments can be chosen to construct such ranges at a given instant. Whether 

they are self- preserving is another matter . By similarity , the vor t icity 

cascade rate must have the form r. = 2Ak2c ~ith A k- independent . But the 

rate itself must be independent of k . Otherwise , the outfloW of squared 

vorticity from each ~egment would not equa: the inflow , which would violate 



vorticity conservation since with k- independent r the rate-of- change of 

e xcitation intensity i s ins tantaneously zero at each k . The or.ly possible 

resolution i s A : 0 , That is , the rate of squared-vorticity cascade i s 

identically zero in a similari ty cascade where c l s independent of k . 

This i s corroborated by forcal analysis in Sec . 2 . 

The r oles of energy and squared vorticity are interchangeable in 

t he preceding argument . lf t here i s a similarity range with !<- independent 

contr ibution to n from the trt~d i nteract i ons -~ose ratio of lat~est to 

Sl:\dll est wavenumber ralls within some limit , t hen t he contribution of 

t hose t riads t o t ~usr be identically zero within the r ange . This mean! 

that two kinds of putat i ve inert ial- transf er s imilarity ranges must be 

investigated : energy-transfer and vorticity-transfer r anges . Kolmogorov• s 

assw:~ption t hat the enet iJY spectrum E:(k) depends only on k and t l;oads t o 

( 1. 1) 

in two dimens ions as well as in t hree . Here E:(k) i s defined so t hat t 'c 

mean kine t ic energy per unit mass i s J0.£(k)dk , and C i s a const ant whose 

value can depend on the dioeosionality . T~e alternate assumption tha t the 
? on 

squared - vorti city spectrum 2k ~(k ) dependsAonly n and k yields 

wher e C' is another constant . In Sec . L it is shown that ( 1 . 1) and (1 . 2) 

each satisfy both conservation laws . llecessary conditions for t he physical 

rcaliz~bility of t hese similarity ranges arc that t he transfer processes 

be sufficiently local in waven~~ber when all tri ads are admitted . Thi s is 

discussed i n Sec . ~ where it is not ed t hat the -3 r ange fails by l ogarithmic 
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factors to be suff" ciently local and therefoM must be modified by facmrs 

with logarithmic k dependence . 

Both experiment and general st~tistical-mochanical considerations 

indicate that the energy cascade through the inertial range is from lower 

to higher wavenumbers in three-dimensional turbulence . The intensity at 

high wavenumbers is suppressed by viscosity and it is natural to expect 

a net transfer toward these wavenumbers ft"om the strongly excited low 

wavenumbers . . n two diaensions . the vorticity constraint drastically 

changes matters . A given triad interaction spreads the excitation in 

wavenumber space if it gives a net flow out of the middle wavenumber into 

t he small and large wavenumbers. The reverse flow concentrates the exci­

tation . Spreading of the excit~tion by the triad interactions would 

seem to be the more plausible state of affairs . Some supporting evidence 

is presented in Sec . 3. If the rriad interactions do spread the excitation 

in wavenumber space , then it is proved in Sec . 3 that the - 5/3 range yields 

c < 0 ; that is , the eneroy cascade is downward in wavenumber. The - 3 

range under the same condition yields vorticity cascade upward in wave­

number ( t'l > 0) • 

If the directions of cascade are as just described , the - 5/3 range 

could serve to remove energy from an i'nput r ange of wavenumbers down toward 

zero wavenumber , while the - 3 range could carry vo.rticity up to the dissi­

pation range . Thus both ranges c.->uld exist simultaneously. This eonjec­

ture is dis~ussed in Sec. 4. 
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2. FORMAL ANALYSIS OF THE .SI MILARlTY RANGES 

Let the flow be confined in a cycllc box of side D and expand the 

velocity field in Fourier series so that the incompressible Navier-Stokes 

equation becomes 

( o/3t + vk
2)u.(k) = - ik (6.j - k.kj/k2) r_k uj(p)u (q). 

~ - m 1 1 p.;--~- _ 111 -- ·--
( 2 .1) 

where v i s the kinematic viscosity . In the limit D ~ • (necessary for 

stri ct isotropy) ~ 

E()c) = wkU(k) , (2 . 2) 

where ( ) denotes ensemble average and the mean kinetic energy per unit 

ma.ss i s f0. E(k)dk , U(k) measures the intensity of excitation per mode . 

The energy balance equation is 

where 

T(k , p,q) 

.... 
T(k) = ; f f T(k ,p ,q)dpdq , T(k ,p, q) : T(k ,q ,p) , (2 . 3 ) 

0 0 

= 2•k Im{( 2wtlsin(p ,q)I)(D/2• )q(k 6ij+k.6i) 
-- !'I JIll 

* x(u1 (~)uj(£)UD(~)l (k=p+q , k = lkl , p = IPI . q = lctl> . --- - - -
T(k , p ,q) = 0 (if k, p , q cannot form the sides of a triangle) . (2 . '+) 

2nJJ1sin(p,q)l - 1dpdq. - -
Detailed conservation of energy and squared vorticity for each triad 

interaction is expressed by 

T(k ,p ,q) + T(p ,q ,k) + T(q , k, p} E O, 

2 2_ 2 k T(k ,p ,q) + p-r(p ,q ,k) + q T(q ,k , p) - O, (2 . 5) 
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which can be verified from (2 . llo) with the use of incompress ibility and 

plane-tria •6le i dentities . The overaH conservation laws 

• 
I T(k)dk = o, 
0 

(2 . 6) 

fo llow from ( 2 , 5) . Conve.•sely , (2 . 6) implies (2.5) • since (2.6) must hold 

fer states in which only a single triad of wavevectors have nonzero ampli-

tudes at an ins tant so that the instantaneous T( ) va.nishes outside the 

triad . By (2 . 5) , 

T( k)rr(~ ) = (q2- k2)/(p2-q2) , p, q , )l, ,p ,q T(q~k ,p)/T(p ,q,k) 

2 2 2 2 = (k -p )/(q -k ) , 2 2 2 2 r<k , p , q>rr<q ,k ,p> = <p -q >l<k - p > (2. 7) 

'50 that only one of the T( , , ) associated with a given triad interaction 

is linearly independent . 

The mean l'ate of transfer of kinetic energy per unit 111c1ss from wave­

numbers below k to those above is R(k) = lk•T(k 1 )dk 1 • By (2 . 5) , 

.. kk k ... 
R(k) = ; f dk ' f f T(k ' , p ,q)dpdq - ; f dk ' f f T(k ' , p ,q)dpdq . 

k 00 0 kk 
(2 . 8) 

Thf first term on t he ri,ght- hand side is the total rate of gdn in the 

range lc ' > k due to triad i nteMtctions ·with p,q < k , while the second 

term is the total l'ate of loss in the ange k' < k due to ·triads with 

p ,q > k. These two classes of triad intel'actions are mutually exclusiv• 

and exhaust tho interactions which contribute to net energy transfer 

across k . Si milarly , the mean r ate of transfer of squared vorticity 

from below k t o above k is 

- k k dpdq k .... 
ZOe) = J (k' )2

dk ' J I TOe' , p , q) - J (k' )2d.k ' I J T(k ' , p ,q)dpdq. 
k 00 1\ (l kk 

(2 .9) 
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Assume that the double and triple a:OC'ents at the i nstant considered 

satisfy the similarity la~s 

-n t(ak)/£(k) = a , T(ak , ap , aq)/T(k , p,q) -U+3n)/2 
= a ' ( 2. 10) 

where a i s an arbitrary scaling factor and n is so far undetermined . The 

scaling of T(k ,p ,q) in (2.10) is the same as that of (E(k)J312k-l/2 

(which has the same dimensions) and corresponds to a-independence of the 

appropriately defined t r iple-correlation coefficients of the di~tribution 

of tho Fourier amplit udes in the neighborhoods of t he wavenumber arguments . 

tlote that/
0 

kdpf
0 

kdq is equivalent to 2j
0 

kdpj
0
Pdq in the first urm on 

the right-hand side of (2 . 8) because or the symmetry of T(k ' , p,q) , while 

Jk•dpfk•dq in the second t erm is eqaivalent to 2jk~dpfp•dq . Set p = k/u , 

q = ov , k ' = pw in the first te:'lll and p = k/u , k ' = pv , q = pw in the 

second 1:erm. !lote that /l
00

du/
0
.dll is equivalent to J1""dwJ1wdu in the 

J l f u . 1 1 1 1 firs t term and 
0 

du 
0 

dv i s equ1valent to 0 dv v du in the second term. 

Use (2 . 10) with a= lc/u , and finally use (2 . 7) to obtai n 

l -= ( 5- 3n)/:i'r f ( ) < ) fi( k) k 1 dv dw w1 v,w ,n T l ,v,w , 
0 l 

(2 .11) 

wheN 

W. (v ,w ,n) = - ( w2 -v2) - l( (l-v2) ( u (3n- ?) 12du- ( w2 - 1) / u ( an- 7 
)/2du] . (2 . 12) 

- 1 v 

Repeat ing t he procedure for Z(~) gives 

(9-3n)/2f1 

1• Z(k) = 2k dv dw W2(v ,w, n)T(1 ,v, w) , 
0 1 

(2 . 13) 

where 

( 2 2) -1(( 1 2) zf"' (3n- 11)/2d ( 2 1, 2f
1 

(3n-ll)/2d = - w - v -v w u u- w - JV u UJ, 
1 v 

( 2.14) 
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Equ:t tions (2 . 11) and (2 . 13) ey· rs:1 fi(k) and Z(k ) as integrals over 

contributions from all the possible shapes of the triangles formed by 

k ', p, q in (2 . 8) and (2 . 9) . Since v < 1 and w > l , each palr of values 

v, w correspo~~~ un1quely to a particular triangle shape . By defin~tion , 

T(l , v," ) is zero if 1, v , w cannot form a triangle. The W factors give 

the weights of the contributions of the different triangle shapes and 

arise from int-egration over triangle size . 

If n = 5/3 , (2 . 11) says that fi(k) has a value c which is i.ndep~ndent: 

of k. If n : 3• (2 . 13) gives ?.(k) a value ~ which is independent of k . 

By (2 . 12) and (2 . 14) , 

2 2 -1 2 2 2 2 w
2
(v ,w, 3) ·= - ( w - v ) ((1- v )w ln{w)+(w - l)v ln(v)] , (2 . 15) 

Thus , for each triangle shape individually , an n : 5/3 similarity range 

yields a k-independent energy cascade and identically-zero vor~icity 

cascade , while an n = 3 s imilarity range yields a k- independent squared-

vorticity cascade and identically-zero energy cascade . 

The scaling of E(k) ha~ not been used in obtaining these resu1ts . 

Therefore they hold also for more general similarity ranges in which n 

is replaced by n ' 1 ~ in the first equation of (2 . 10) . 
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3. CASCAD£ DIRECTIONS 

T(l~v ,w ) in (2 . 11) and (2 . 13) represents a (~igned) flow into the 

mid~le wavenumber cf the triad l , v, w since v < 1 and v > 1. It i s shown 

in the Appendix that w1(v ,w, 5/3) > 0 and w2( v, w, 3) < 0. This means ~hat 

the contribution of each t riangle shape to c in the - 5/3 range has the 

same sign as tho flow of exci tati on i nto the middle wavenumber . while t he 

contribution to o in the - 3 range has the opposite sign . There is nothing 

in t he conservat i on propert i es by thcoselves to determine the sign of 

T( 1,v ,w) . Indeed , if a similarity range with a given sign of T(l ,v ,w) 

exists at an ins tant , then a r ange with the opposite sign is produced by 

reversing the velocity everywhere in space . 

Physical interes t attaches not to hypothetical instantaneous similar-

ity ranges bu~ to the possibility of quasisteady ranges whi ch develop 

under the dynamical equations . In three dimensions , a hint as to the 

direction of cascade in the - S/3 range c~es from considering the absolute 

statisti cal equilibrium which would obtain if viscosity were zero and the 

system ~ere truncated by removing all degrees of fre~om with k g~eater 

than some cutoff wavenumber k from the dynamical equations . The t ot al 
max 

kinetic energy per unit mass is~ rl£1 ~<~> 1 2 • and consequently the ener .gy 

spectr um in the hypothetical absolute equilibrium would have the equiparti­

tion for= U( k) = constant , or £(k) • k2• The - 5/3 spectrum means ~hat 

higher wavenumbers in the inertial range are far bolo~ absolute equilibrium 

with lower 01avenumbers and it is plausible that the dynamical intct"aetion 

should act toward producing equilibrium, a state which never can be reached 

because ~he viscous dissipation provides a high-k :;ink. 
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In two dimensions . t:he absolute equilibrium has a more complicated 

structure because there are two linearly independent 1uadratic constants 

of motion , The general form of the equilibrium spectrum is 

U(k) : l/(Sk2 + a) 0 (3 . 1) 

where 8 and a are constants . This is an equipartition distrlbution10 for 

the constant of motion ~k(Sk2 + c)l~<~>l 2 • The correspond: ng vorticity 

spectrum 2wk3U(k) incre.;es :nonotonically with k so that most: of the 

vorticity in equilibrium is at wavonumbers ~ k • Since k_av can be max .......,. 

arbitrarily h.:.gh . this suggests that a tendency tC»~ard equilibri..un in 

an actual physical flow should .:.nvolve an upward flow of vorticity and 

therefore , by the conservati on laws, a downward flow of energy . Thus if 

the no~linear interaction does act toward producing equilibrium, T(l ,v ,w) 

should be typically negative . A sietpler and cruder statement is that 

T(l 0v ,w) should be negative because that represents a statistically 

pl~us ·ble spreading of t he excitation in wavenumber : out of the middle 

wavenumber into the extremes . 

Supporting evidence is provided by the initial growth of energy 

transfer in turbulence whose initial stat.istical distribution is Gaussian . 

The exact expression for this in t wo dimensions has been obtained by 

8 9 Reid and Ogura . It is 

2 2 
(dTO: , p , q) /dt )0 =2• k dkpq (2~pq U(p)U(q)-bkpq U(q)U(k) - bkqpll(k)U( p)] . 

(3 . 2) 
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Here 

bkpq 
-1 3 = 2pk (xy- z+2z ) , 

d = k/(l-x2)112 = diameter of circumscribed circle , kpq (3 . 3) 

where x, y , z arc the interior angles opposite the triangle s ides k, p~ q . 

The coefficients obey the identities 

~ >0 <\pq : d : d k2b : 2b 
pq - • pqk qkp ' kpq p pkq ' 

2 2b + 2b 2k akpq :: p kpq q kpq 

Whence 

? 2 2 2 
bkql~q 

2 2 2 2 bk /~ = 2(q~-k )/(q - p ) , = 2(p - k )/(p -q ) . 
pq pq 

Now suppose 

- r U(p) = (p/k) U(k) , U(q) = (q/k) - r U(k) . 

Equations (3 . 2) - (3. 5) yield 

2 2 2 -r 2 (dT(k , p,q)/dt )0 = 2• k d_ ~ (pq/k ) ( U(k)) 
KP.t kpq 

(3 . 4) 

(3. 5} 

(3 . 6) 

(3 . 7) 

where v = p/k , w = q/k . It i s shown in the Appendix t hat when v < 1 and 

w > 1 the curly bracket in ( 3. 7) i s > 0 i f 0 < r < 2 and< 0 if r < 0 or 

r > 2 . Thus the i nitial growth o>f T(k ~p ,q) gives a positive flow into t he 

middle wavenumber k if r fal ls between the limits (0, 2) set by thP extreme 

absolute equilibriUQ di stributions 8 = 0 and a = 0 in (3 . 1) . I f r is out-

siae those limits , there i s net fl~~ out of k . The - 5/3 and - 3 similari ty 

ranges correspond to r = 8/3 and r = 4, both of which yi eld net outflow. 
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1! . CONJl:C'rURES OU QUASI STI:AOY STATtS 

Are the formal - 5/3 and - 3 similari ty ranges asymp~otic limits of 

sut:es which can a r ise physically? Suppose that an infinite fluid i s 

excited by isotropic stirring forces confined to k ~ k1 , whe~ ki i s a 

char acteris tic input wavenumber. Let the s tirring forces 

at a s teady r ate c and squared vorticity at a s t eady rate 

supply energy 

2 
1'1 "' 2k1 c . 

More general ratios Tl/£ are interesting but will not bo considered here . 

The preceding analysis suggests that i f the input continues for a suffic­

iently long 'time and the Reynolds number (E(ki)/kiJ112;v i s lar ge enough , 

a quasisteady s tate may be set up in which an approxiaate - 3 vorticity-

trans fer range carries most of the squared- vorticity input up t o k » ki , 

where it is dissipated by viscosi ty , while an approximate - 5/3 energy-

transfer range carries most of the energy input down toward zero wave-

number . The - 5/3 range can be only quasisteady because its lower end 

keeps moving down to ever- lower wavenumbers ~ a wavenumber k << k1 being 

reached in a tice t "' ( ck2)- l/J according to energy conservation . As 

t ... "' • the r.tlc of transter of squared vo.rticity from lc "'k . to lower 
l. 

wavenucbers decreases s teadily toward zero and the energy- transfer range 

approaches the asymptotic -5/3 dynamics ever more closely . 

The formal similarity ranges c<on represent asymptotic quasisteady 

s tates only if the cascades are sufficiently local in wavenumber. The 

ques tions involved here are the same in t wo and three dimensions , Local 

transfe r in the - 5/3 range is plausible for t he reasons given by Kol.J:Io-

gorov. The transfer is associated with the dlstortion of the velocity 

field by its own shear. The cascade fi (k) through a given wavenumber k 
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in a -5/3 range is expected to be negligibly affected by wavenumbers < < lc 

f ... 2 
because t he' integral 0 ~ E(k)dk , which measures the Qean-square shear, 

converges at k = 0 . 1 t i s expect:ed to be negligibly affected by wavenumber s 

» k because the vorticity associated with those wavonu:mbers fluctuates 

rapidly in space and time and gives an effective sb.ear across distances 

of order k- l which is small compared to the shear associated with the 

wavenumber s "" k . 

On ·the other hand , the s"uared-vort:icity spectrum in the -1 range is 

« k- l so that each octave below a given wavenumber k contributes the same 

amount to t he mean- square shear and the latter diverges logarithmically 

toward small k. This means that transfer in the - 3 range is not local 

when a l tr:~d : nteractions are ad i tted , It would see~ plauqJble t hat 

when tnis range occurs as a quas isteady state the power law i s modified .. 
by logarithjc corrections . Subject to such corrections , the - 3 range can 

be expec·ted t o extend up t o k ""kd = (1'1/\1
3) 116 , at ~o-,,ich wavenuabcr the 

inteir>ated rate of di~sipation of squared vorticity by viscosity reaches 

the order of n. At higher wavenumbers , E(k) is expected to fall off at 

a faster-tban-al£ebraic rate . 

2 The corresponding viscous dissipation of kinetic energy is cd "" n/kd , 

2 which implies cd "" t(ki/kd) • Thus td/c • 0 if v • o, in ~ked contrast 

to three- dicensional turbulence where ·the energy loss becomes independent 

of v as v - o. These consideNtions iClply thcrt the entire energy input 

c is carried down towar-d k = 0 wi-thout viscous loss in ~l'.e limit of infinite 

Reynolds number. The t'eSUlt is not directly applicable to meteorological 
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flo"'s because ·the constraints which render the latter two-dimensional 

break down a t sufficiently high k. 

The actual co~rectnoss of the strict -5/3 asymptotic i nertial-

range law is not established beyond doubt in three-dimensional flow, 

and the arguments for s imilarity ranges in two dicensions are substantially 

less secure . The present paper has demonstrated some elementary consistency 

properties , but this does not show that t he similarity ranges actually 

exist . 

One important difference between ·t'<o and three dimensions is the 

existence of an infinite number of local inviscid constants of motion 

in the former: the vorticity of each fluid ele~~~ent . This implies that 

inertial forces alone cannot produce universal statistical distributions 

11. the sicilarity ranges , independent or the statistica.t.. distribution of 

the driving forces . In three dimensions there are also an infinite 

number of inviscid constants of motion: the circulations about all closed 

cur•1es mo•ling with tho flu i d . However a given closed curve is expected 

to stretch and migrate in complicated fashion t hr ough the fluid with the 

pass~ge of time so that i t is ~asonable to expect that the circulation 

invariance does not impose effective constraints on n-variate distribution 
(the latter corrected by a logarit~mic-type function of k/ki ) 

functions for soall n. If ( l.l) and (1. 2) are realized in two dimensions", 

i't is t<' be e )l'.pected that C and C' are not universal constants but depend 

on t he character of the driving for ce::- . what&ver may be the s ituation i'n 

t hree dimensions . ~ further point is ~hat the nonlocalness of transfer in 
in itself 

the - 3 range suggests~that cascade there is not accompanied by degradation 

of higher statistics in the fashion usually assumed i n a t hree-dimensional 
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Kolmogorov cascade . This is consistent with a picture of the t~ansfer 

process as a clumping- together and coalescence of sitilarly signed vort ices 

with the high wavenumber excitation confined principally to thin and in­

frequent shear layers attached to the ever- larger eddi es thus formed . 1 •5 

In connection with t ho sign of c in the - 5/3 range , i t should be 

noted t hat a pos itive- c range ex1:cnding from the input wavenumbers up 

to the dissipation range would be phys ically unrealizable . The viscous 

dissipation would remove squared vorticity and kinetic energy in a rat io 

nd/cd which would greatly exceed tho ratio at which these quantities 

were cascaded • s inco the l~tter ratio goes to zero as the as}~ptotic 

-5/3 s tructure is app:~ched . Thus an upward- transfering - 5/3 range 

could not exist as a quasisteady state . The incons is~ency of such a 

range has previously been demonstrated by Lee. 2 

Suppose now that tho fluid is confined t o a finite domain and that 

~he low~st wavenumber allowed by the boundary conditions is k0 << k
1

. 

The conjecture i s offered here that after the - S/3 range reaches down 

to wavcnumbers ~ k0 the do~ward casc~de fron1 k1 continues and the ener gy 

delivered to t he botto:t of t he range pi11s up in the mode k0 • As the 

energy in k0 rises sufficiently , modification of the - 5/3 l'ange t oward 

absolu e equilibrium i s expected , s tarting at t he bottom and working up 

to progress ively larger wavenumbers . 

Some 3upport for ~he idea of energy pil ing up in k0 comes from con­

Sldering tho absolute equiUbrium ensembles ( 3 . 1} . Suppose that the 

wavenumber range i s truncated from below at k0 and from above at: a wave-

n~r k Let the cean energy and mean -square vorticity have specified 
aax 
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2 values £ and Q = 2k1 E. The r atio and s i gns of 8 and o in (3 . 1) depend 

on the r elative values of k0 , k1, and kmax ' In particular , 

Q : 0 if k 2 
l = !. (1<2 

2 max ko 2 )/ll'~kmax/lco) • (4 . 1) 

8 0 if k 2 = 1 (k2 2 = + k0 ). l 1 Cia)( 
(4 . 2) 

for values of k 2 between (4 . 1) and (4 . 2) , o ~ o , 8 > 0 . 1 
2 ror k 

1 
less than 

2 (4 . 1) , 8 > o, - 8k0 < o < o. If k1-k
0 

<< k0 ~ then 8k0
2 

+ 

2 

o << 8k~ and L(k) 

has a sharp peak at k = 

< o, and k2E(k) shows a 

for k
1 

grea~er t han (4 . 2), 2 o >0 , -a/k max 

sharp peak at k = k if k -k « k • 
max max l max The 

values k1 < k0 and k1 > kmax are i~possible . These r esults are all for 

a continuous spectrum of allowed wavenumbers , When the discreteness 

associated with a f i nite flu id is taken into account , the sharp peak i n 

E(k) is modified so that the lowest mode k0 singlehandedly carries oost 

< 8 

of the tota~ kinetic energy if k1-k0 is much less t han the mode separation Ak 

of the l owlying degrees of freedom . 

These results suggest that a piling up of energy in k0 under a 

steady input would represent a plausible way f or the wavenucbers < k. to 
l. 

seek an absolute statistical equilibrium of the kind t hat corresponds t o 

very large E/0 . The phenomenon is ana~ogous t o the Einst ein- Bose conder-

sat ion of a ~we-dimensional quantum gas . 
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APPENDIX. PROOrs OF lNI:QUALlTIES 

Take w > 1 , 0 < v < 1 throughout this Appendix . Let 

I(v ,w) = (l-v2)ln(w)+(w2-l)ln{v) . 

Then I(l,w) = 0 , 3I(v ~w) /3v = (w2- U/v - 2vln(w) , and 

[ 3I(v ,w)/lv)v=l = (w2-l) - 2 ln(w} - F(w) .• 

NGW F(l) = 0 , dF(w)/dw = 2w - 2/w > 0, Therefore 2 w - 1 > 2 ln(w) and , 

since v- l > v , i1: follows tha': 3I(v, w) /3v > 0 , so t hat I( v ,w) < 0 . This 

establishes w
1

(v ,w,5/3) > 0 . 

Let 

J(v ,w) = (l-v2 )w2ln( w)+(w2-l)v21n(v). 

Then J(1 , w) = o, 3J(v, w) /3v = (w2-l)v[l+2ln(v))- : vwlln(w) . Now 2w2ln(w) 

2 
> w - 1 and v v~2vln(v) , the first inequali ty readily following uoon 

different:iation and the seco.nd foll r o.1.ng from ln(v) < 0 . Therefore , 

3J(v ,w)/3v < 0 , J( v0w) > 0 , whence w
2

(v , w, 3) < 0 . 

Let 
r 2 2 2 1-v (w -1)/(w -v ) r 2 2 2 

w (1- v )/(w - v ) . 

Then 

considered as a function of r , is the swn of a positive term of 

mon6tonic"llY decreasing ma,gnitude and a neRati .e term of monotonically 

increasing ""J6ni tude . Therefore it hl\s just one zero., and !. t is positive 

as r ~ - • , negative as r ~ +• . Since K(v ,w,r) has ze r oes at r = 0 , r = 2 , 

it follows that K(v ,w, r) is > 0 for 0 < r < 2 and < 0 for r < 0 and r > 2, 

This establishes the sign of t he right-hand side of (3.7) . 
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fiGURE CAPTION 

FIG. l. Part (a) represents the cascade of oKcitation through t:he 

wa venumber spectrum by means of elementary t~iad inte~actions . Part (b) 

represents a palr-interact:i on cascade , which is a valid simplific~tion i n 

thi'ee dimens ions but not in t:wo dimensions. 
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n-1 n n+l 
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